Stochastic day-ahead optimal scheduling of multimicrogrids: an alternating direction method of multipliers (ADMM) approach
نویسندگان
چکیده
Multimicrogrid system is a novel notion in modern power systems as result of developing renewable-based generation units and accordingly microgrids distribution networks. Their energy management might be challenging due to presence independent units. Thus, this paper, decentralized method for multimicrogrid has been proposed. Decentralized methods can enhance the privacy users reduce burden calculations. Alternating direction multipliers (ADMM) selected approach which capability breaking problems with complicating constraints order facilitate solving process. Using not only reduces calculations, but also increases entities. Wind turbines renewable based generators are assumed participate system. To model uncertainties these units, chance-constrained programming employed. Also, clean output hydrogen storage fuel cells, inclination using expanded. Simulations on test case study demonstrate applicability performance proposed methodology. Considering reliability level 0.9 results 12, 989$ case. By considering 0.8, operational cost becomes 11, 712$ shows reduction 1277$ achieved by jeopardizing 10%.
منابع مشابه
Towards an optimal stochastic alternating direction method of multipliers
We study regularized stochastic convex optimization subject to linear equality constraints. This class of problems was recently also studied by Ouyang et al. (2013) and Suzuki (2013); both introduced similar stochastic alternating direction method of multipliers (SADMM) algorithms. However, the analysis of both papers led to suboptimal convergence rates. This paper presents two new SADMM method...
متن کاملThe Alternating Direction Method of Multipliers An ADMM Software Library
The Alternating Direction Method of Multipliers (ADMM) is a method that solves convex optimization problems of the form min(f(x) + g(z)) subject to Ax + Bz = c, where A and B are suitable matrices and c is a vector, for optimal points (xopt, zopt). It is commonly used for distributed convex minimization on large scale data-sets. However, it can be technically difficult to implement and there is...
متن کاملTowards optimal stochastic alternating direction method of multipliers: Supplementary material
1. The strongly convex case 1.1. Proof of Lemma 1 Lemma 1. Let f be µ-strongly convex, and let x k+1 , y k+1 and λ k+1 be computed as per Alg. 2. For all x ∈ X and y ∈ Y, and w ∈ Ω, it holds for k ≥ 0 that f (x k) − f (x) + h(y k+1) − h(y) + ⟨w k+1 − w, F (w k+1)⟩ ≤ η k 2 ∥g k ∥ 2 2 − µ 2 ∆ k + 1 2η k [∆ k − ∆ k+1 ] + β 2 [A k − A k+1 ] + 1 2β [L k − L k+1 ] + ⟨δ k , x k − x⟩. By the strong con...
متن کاملAdaptive Stochastic Alternating Direction Method of Multipliers
The Alternating Direction Method of Multipliers (ADMM) has been studied for years. Traditional ADMM algorithms need to compute, at each iteration, an (empirical) expected loss function on all training examples, resulting in a computational complexity proportional to the number of training examples. To reduce the complexity, stochastic ADMM algorithms were proposed to replace the expected loss f...
متن کاملFast Stochastic Alternating Direction Method of Multipliers
In this paper, we propose a new stochastic alternating direction method of multipliers (ADMM) algorithm, which incrementally approximates the full gradient in the linearized ADMM formulation. Besides having a low per-iteration complexity as existing stochastic ADMM algorithms, the proposed algorithm improves the convergence rate on convex problems from O ( 1 √ T ) to O ( 1 T ) , where T is the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Turkish Journal of Electrical Engineering and Computer Sciences
سال: 2022
ISSN: ['1300-0632', '1303-6203']
DOI: https://doi.org/10.55730/1300-0632.3853